Welcome to DU! The truly grassroots left-of-center political community where regular people, not algorithms, drive the discussions and set the standards. Join the community: Create a free account Support DU (and get rid of ads!): Become a Star Member Latest Breaking News General Discussion The DU Lounge All Forums Issue Forums Culture Forums Alliance Forums Region Forums Support Forums Help & Search

kristopher

(29,798 posts)
Wed Aug 26, 2015, 02:58 PM Aug 2015

The archaic nature of baseload power–or why electricity will become like long-distance

Extended excerpt posted with permission

The archaic nature of baseload power–or why electricity will become like long-distance.

There are no shortage of skeptics out there, even some among environmentalists and clean energy advocates, who are unconvinced that renewable energy can ever be the dominant–perhaps even sole–source of electricity generation.

The reasons for this skepticism vary. Some, for example, argue that the land needs for sufficient generation of wind and solar power are too great. This turns out to be an incredibly lame argument, but that’s the subject of a different article.

More frequent are the arguments that “baseload” power–large power plants that tend to run 24/7–are necessary to ensure reliable electricity and that the variable nature of some renewables–solar and wind–can’t provide that reliability. Then there’s the notion that the electrical grid can only accommodate a certain level of renewables, around 30-40%. Above that and the grid pretty much breaks down. These arguments are actually related and solved in the same way.

More recently, an argument has been circling among energy nerds–especially pro-nuclear energy nerds–that the integration of renewables into the grid reaches a peak for economic reasons: that renewables are limited by their cost. Not by their high cost, but by their low cost, or as one writer put it: solar and wind eat their own lunch. But that merely shows that not only must the technical nature of the grid change, and it can; but so must its economic nature, and it can too.

The electric grid in use today was mostly designed in the 20th century. Large baseload nuclear and fossil fuel plants were built, usually far from the largest electricity consumers (cities and large industry), and transported by huge (and not particular efficient) power lines. Those baseload plants had, and have, high capacity factors and run pretty much all the time, although nuclear reactors have to be shut for refueling for a few weeks every 12-18 months. Utilities try to arrange those shutdowns to occur during periods of low demand. During peak power needs–hot summer days in most of the country–smaller gas plants and in the old days even oil plants would be fired up to supplement the baseload levels.

And it all worked pretty well given the technology available at the time.

But, as we all now know all too clearly, that system had a price–a price not reflected in the cost of electricity. That system was and is killing us. Those large nuclear and fossil fuel plants are spewing out carbon dioxide and radioactivity and creating large quantities of dirty and deadly waste products that society doesn’t know what to do with.

Had the cost of those effects–which do have a price, a steep one–been incorporated into the price we and our parents paid for electricity, we probably would have moved to a clean energy system much faster. As it is, we no longer have much of a choice.

Fortunately, as is being proven daily in Europe, a grid based on smaller, distributed variable power sources can be just as reliable, and even more resilient and secure, than a grid reliant on baseload power. Variable does not mean unreliable: as long as it can be reliably projected with sufficient advance time what the wind will do and thus how much wind power will be available where, and the same for the sun, then a variable grid can be highly reliable. And those can be and are, in fact, reliably projected.

The ability to integrate a moderately large amount (say 30-35% or so) of renewables into a baseload-dominated grid is a given. It is happening daily. Not so much in the U.S., although even here states like Iowa are getting more than 20% of their power from renewables, and the percentage of renewables is set to rise rapidly–both on their own for sound economic reasons and due to encouragement of them in the Clean Power Plan.

But at some point above 35-40% renewables or so, a conflict arises. If more renewables are to be brought into the grid, the large baseload plants have to begin closing–even if they theoretically remain useful. That's because...
http://safeenergy.org/2015/08/20/the-archaic-nature-of-baseload-power-or-why-electricity-will-become-like-long-distance/#more-13517

This is a very good read on the transition.
1 replies = new reply since forum marked as read
Highlight: NoneDon't highlight anything 5 newestHighlight 5 most recent replies
The archaic nature of baseload power–or why electricity will become like long-distance (Original Post) kristopher Aug 2015 OP
I would think decentralization would help Demeter Aug 2015 #1
Latest Discussions»Issue Forums»Environment & Energy»The archaic nature of bas...