Welcome to DU! The truly grassroots left-of-center political community where regular people, not algorithms, drive the discussions and set the standards. Join the community: Create a free account Support DU (and get rid of ads!): Become a Star Member Latest Breaking News General Discussion The DU Lounge All Forums Issue Forums Culture Forums Alliance Forums Region Forums Support Forums Help & Search

OKIsItJustMe

(19,937 posts)
Wed May 31, 2017, 04:57 PM May 2017

NOx: Traffic Dramatically Underestimated as Major Polluter

https://www.uibk.ac.at/newsroom/nox-traffic-dramatically-underestimated-as-major-polluter.html.en
[font face=Serif][font size=5]NOx: Traffic Dramatically Underestimated as Major Polluter[/font]

31.05.2017

[font size=4]Traffic contributes more to nitrogen oxide emissions in Europe than previously thought. This is the result of a current study carried out by scientists from the University of Innsbruck. The research team headed by Thomas Karl shows that even newer air quality models underestimate traffic related nitrogen oxide pollution by up to a factor of 4.[/font]

[font size=3]In metropolitan areas throughout Europe maximum permissible values of nitrogen oxide are consistently breached. It has been a challenge to determine how much each polluter contributes to the emission output. Until now emission levels were mainly calculated by collecting emission data at laboratory testing facilities and subsequently extrapolating them in models. However, the amount of pollutant emissions that vehicles emit on a daily basis depends on numerous factors, for example on individual driving behavior. The recent Diesel scandal showed, for example, that measurements at engine test stands based on the New European Driving Cycle (NEDC) or similar emission testing procedures can be highly uncertain for predicting actual environmental impacts. A large number of new studies have recently been published suggesting that emission levels from test stands have to be adjusted upwards.



The researchers from Innsbruck use a special measurement method – the so-called eddy-covariance method – to continuously monitor the concentration of trace gases in air, which enables them to determine the emissions in an urban area. “We continuously measure the concentration of carbon dioxide, nitrogen oxide and volatile organic compounds at our urban observatory in Innsbruck. We record 36,000 data points per hour,” explains Karl. Using statistical methods, the scientists infer emissions from these data within a radius of about one kilometer of the measurement location. The analysis of the data of a three months long measurement campaign, which took place in 2015 and is now published in Scientific Reports, shows two main sources for nitrogen oxide concentrations in the Innsbruck air: traffic and residential combustion, with traffic accounting for more than 80 % of the nitrogen oxide emissions in the surroundings of the test station at the University. The majority of the emissions is caused by Diesel cars. “This result is relatively representative for the whole city,” says Karl who points out the far-reaching relevance of the results: “Even newer atmospheric models are based on emission inventories that underestimate nitrogen oxide emission levels up to a factor of four.” The actual nitrogen oxide emission levels may be four times higher than predicted in the some models.



Nitrogen oxide is toxic in higher concentrations and classified as hazardous air pollutant. In addition, it contributes to the development of ground-level ozone. Regulatory thresholds are meant to limit emissions. However, in Innsbruck, for example, the average level of nitrogen oxide is 36 times higher than the new emission regulation standard laid out in the Clean Air Act in the USA. Because of the high levels of nitrogen oxide along the motorways of the Inn valley and the Brenner pass, driving bans and speed limits pursuant to the Austrian Clean Air Protection Act (IG-L) have already been introduced. The aim of the current study is to determine the main polluters of nitrogen oxide emissions in more detail. The Tyrolean scientists’ future goal is to use their setup to investigate the impact of the motorway in the Lower Inn valley, extend their measurements in Innsbruck to the winter months and study the impact of agricultural activities. Moreover, air researcher Karl wants to establish longer measurement series’. An important step towards this goal is the establishment of the Innsbruck Atmospheric Observatory (IAO), which is currently being built at the Campus Innrain. It will be used by various research groups at the University of Innsbruck.

…[/font][/font]

http://dx.doi.org/10.1038/s41598-017-02699-9
Latest Discussions»Issue Forums»Environment & Energy»NOx: Traffic Dramatically...