Welcome to DU! The truly grassroots left-of-center political community where regular people, not algorithms, drive the discussions and set the standards. Join the community: Create a free account Support DU (and get rid of ads!): Become a Star Member All Forums Issue Forums Culture Forums Alliance Forums Region Forums Support Forums Help & Search

OKIsItJustMe

(19,933 posts)
Thu Apr 11, 2019, 10:51 PM Apr 2019

The right polymers for the job: Technology makes fuel cells more powerful, more durable, less expen...

https://www.udel.edu/udaily/2019/april/fuel-cells-yushan-yan-bingjun-xu-polymers-clean-energy-technology/
The right polymers for the job

Article by Julie Stewart | April 08, 2019

Technology makes fuel cells more powerful, more durable, less expensive

One of the most promising clean energy technologies just got even better. Researchers from the University of Delaware have developed the most powerful, durable hydroxide exchange membrane fuel cell components on record, which they recently described in the journal Nature Energy. The key ingredient? Membranes made from poly(aryl piperidinium) polymers.

Fuel cells work by converting chemical energy into electricity, and they are a promising source of power for eco-friendly vehicles. A few fuel cell vehicles already exist on the market, including the Toyota Mirai, the Honda Clarity and the Hyundai Nexo, and more fuel cell cars are under development worldwide. The fuel cells in automobiles require the use of an expensive catalyst material, usually platinum, to hasten the chemical reactions inside. These are called proton membrane exchange fuel cells, and they contain membranes made of a fluorinated polymeric material.

For nearly two decades, Yushan Yan, Distinguished Engineering Professor of Chemical and Biomolecular Engineering, has been working to develop fuel cells that don’t require platinum catalysts and instead employ cheaper metals, such as silver or nickel. These fuel cells contain hydroxide exchange membranes, which shift the environment within fuel cells from acidic — the current standard — to alkaline. The membrane of the fuel cell is what determines the pH inside.

“We can make components much cheaper by switching from proton exchange membrane fuel cells to hydroxide exchange membrane fuel cells,” said Yan. In order to make these membranes, Yan has been on a quest to develop optimal, scalable materials. For this project, Yan enlisted the expertise of another electrochemistry expert at UD — Bingjun Xu, assistant professor of chemical and biomolecular engineering.

https://dx.doi.org/10.1038/s41560-019-0372-8
Latest Discussions»Issue Forums»Environment & Energy»The right polymers for th...