You are viewing an obsolete version of the DU website which is no longer supported by the Administrators. Visit The New DU.
Democratic Underground Latest Greatest Lobby Journals Search Options Help Login
Google

Reply #10: That word “slightly” [View All]

Printer-friendly format Printer-friendly format
Printer-friendly format Email this thread to a friend
Printer-friendly format Bookmark this thread
This topic is archived.
Home » Discuss » Topic Forums » Environment/Energy Donate to DU
OKIsItJustMe Donating Member (1000+ posts) Send PM | Profile | Ignore Mon Apr-11-11 05:03 PM
Response to Reply #9
10. That word “slightly”
Edited on Mon Apr-11-11 05:20 PM by OKIsItJustMe
I don’t think it means what you think it means.
http://www.merriam-webster.com/dictionary/slightly


c : deficient in weight, solidity, or importance : http://www.merriam-webster.com/dictionary/trivial">trivial <a slight movie>



http://books.nap.edu/openbook.php?record_id=12782&page=21

Uncertainty in Scientific Knowledge

From a philosophical perspective, science never proves anything—in the manner that mathematics or other formal logical systems prove things—because science is fundamentally based on observations. Any scientific theory is thus, in principle, subject to being refined or overturned by new observations. In practical terms, however, scientific uncertainties are not all the same. Some scientific conclusions or theories have been so thoroughly examined and tested, and supported by so many independent observations and results, that their likelihood of subsequently being found to be wrong is vanishingly small. Such conclusions and theories are then regarded as settled facts. This is the case for the conclusions that the Earth system is warming and that much of this warming is very likely due to human activities. In other cases, particularly for matters that are at the leading edge of active research, uncertainties may be substantial and important. In these cases, care must be taken not to draw stronger conclusions than warranted by the available evidence.

The characterization of uncertainty is thus an important part of the scientific enterprise. In some areas of inquiry, uncertainties can be quantified through a long sequence of repeated observations, trials, or model runs. For other areas, including many aspects of climate change research, precise quantification of uncertainty is not always possible due to the complexity or uniqueness of the system being studied. In these cases, researchers adopt various approaches to subjectively but rigorously assess their degree of confidence in particular results or theories, given available observations, analyses, and model results. These approaches include estimated uncertainty ranges (or error bars) for measured quantities and the estimated likelihood of a particular result having arisen by chance rather than as a result of the theory or phenomenon being tested. These scientific characterizations of uncertainty can be misunderstood, however, because for many people “uncertainty” means that little or nothing is known, whereas in scientific parlance uncertainty is a way of describing how precisely or how confidently something is known. To reduce such misunderstandings, scientists have developed explicit techniques for conveying the precision in a particular result or the confidence in a particular theory or conclusion to policy makers (see Box http://books.nap.edu/openbook.php?record_id=12782&page=23#p2001c3c59960023001">1.1).



http://www.climatescience.gov/Library/sap/sap3-1/final-report/default.htm

Climate Models

An Assessment of Strengths and Limitations

How uncertain are climate model results? In what ways has uncertainty in model-based simulation and prediction changed with increased knowledge about the climate system?

Chapter 1 provides an overview of improvement in models in both completeness and in the ability to simulate observed climate. Climate models are compared to observations of the mean climate in a multitude of ways, and their ability to simulate observed climate changes, particularly those of the past century, have been examined extensively. A discussion of metrics that may be used to evaluate model improvement over time is included at the end of Chapter 2, which cautions that no current model is superior to others in all respects, but rather that different models have differing strengths and weaknesses.

As discussed in Chapter 5, climate models developed in the United States and around the world show many consistent features in their simulations and projections for the future. Accurate simulation of present-day climatology for near-surface temperature and precipitation is necessary for most practical applications of climate modeling. The seasonal cycle and large- scale geographical variations of near-surface temperature are indeed well simulated in recent models, with typical correlations between models and observations of 95% or better.




http://www.democraticunderground.com/discuss/duboard.php?az=show_mesg&forum=115&topic_id=287249&mesg_id=287268
GEOPHYSICAL RESEARCH LETTERS, VOL. 38, L05805, 6 PP., 2011
doi:http://dx.doi.org/10.1029/2010GL046270">10.1029/2010GL046270

Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases



The response of the second-generation Canadian earth system model (CanESM2) to historical (1850–2005) and future (2006–2100) natural and anthropogenic forcing is assessed using the newly-developed representative concentration pathways (RCPs) of greenhouse gases (GHGs) and aerosols. Allowable emissions required to achieve the future atmospheric CO2 concentration pathways, are reported for the RCP 2.6, 4.5 and 8.5 scenarios. For the historical 1850–2005 period, cumulative land plus ocean carbon uptake and, consequently, cumulative diagnosed emissions compare well with observation-based estimates. The simulated historical carbon uptake is somewhat weaker for the ocean and stronger for the land relative to their observation-based estimates. The simulated historical warming of 0.9°C compares well with the observation-based estimate of 0.76 ± 0.19°C. The RCP 2.6, 4.5 and 8.5 scenarios respectively yield warmings of 1.4, 2.3, and 4.9°C and cumulative diagnosed fossil fuel emissions of 182, 643 and 1617 Pg C over the 2006–2100 period. The simulated warming of 2.3°C over the 1850–2100 period in the RCP 2.6 scenario, with the lowest concentration of GHGs, is slightly larger than the 2°C warming target set to avoid dangerous climate change by the 2009 UN Copenhagen Accord. The results of this study suggest that limiting warming to roughly 2°C by the end of this century is unlikely since it requires an immediate ramp down of emissions followed by ongoing carbon sequestration in the second half of this century.
Printer Friendly | Permalink |  | Top
 

Home » Discuss » Topic Forums » Environment/Energy Donate to DU

Powered by DCForum+ Version 1.1 Copyright 1997-2002 DCScripts.com
Software has been extensively modified by the DU administrators


Important Notices: By participating on this discussion board, visitors agree to abide by the rules outlined on our Rules page. Messages posted on the Democratic Underground Discussion Forums are the opinions of the individuals who post them, and do not necessarily represent the opinions of Democratic Underground, LLC.

Home  |  Discussion Forums  |  Journals |  Store  |  Donate

About DU  |  Contact Us  |  Privacy Policy

Got a message for Democratic Underground? Click here to send us a message.

© 2001 - 2011 Democratic Underground, LLC