Welcome to DU! The truly grassroots left-of-center political community where regular people, not algorithms, drive the discussions and set the standards. Join the community: Create a free account Support DU (and get rid of ads!): Become a Star Member Latest Breaking News General Discussion The DU Lounge All Forums Issue Forums Culture Forums Alliance Forums Region Forums Support Forums Help & Search

OKIsItJustMe

(19,938 posts)
Tue Sep 13, 2016, 10:29 AM Sep 2016

Carbon-coated iron catalyst structure could lead to more-active fuel cells

https://news.illinois.edu/blog/view/6367/405989
[font face=Serif][font size=5]Carbon-coated iron catalyst structure could lead to more-active fuel cells[/font]

Sep 12, 2016 9:00 am | by Liz Ahlberg Touchstone

[font size=3]CHAMPAIGN, Ill. — Fuel cells have long held promise as power sources, but low efficiency has created obstacles to realizing that promise. Researchers at the University of Illinois and collaborators have identified the active form of an iron-containing catalyst for the trickiest part of the process: reducing oxygen gas, which has two oxygen atoms, so that it can break apart and combine with ionized hydrogen to make water. The finding could help researchers refine better catalysts, making fuel cells a more energy- and cost-efficient option for powering vehicles and other applications.



Iron-based catalysts for oxygen reduction are an abundant, inexpensive alternative to catalysts containing precious metals, which are expensive and can degrade. However, the process for making iron-containing catalysts yields a mixture of different compounds containing iron, nitrogen and carbon. Since the various compounds are difficult to separate, exactly which form or forms behave as the active catalyst has remained a mystery to researchers. This has made it difficult to refine or improve the catalyst.

“Previously, we didn’t know what these catalysts were made of because they had a lot of different things inside them,” Gewirth said. “Now we’ve narrowed it down to one component. Since we know what it looks like, we can change it and work to make it better.”

The researchers used a chlorine gas treatment to selectively remove from the mixture particles that were not active for oxygen reduction, refining the mixture until one type of particle remained: a carbon-encapsulated iron nanoparticle.

…[/font][/font]
http://dx.doi.org/10.1038/ncomms12582
Latest Discussions»Issue Forums»Environment & Energy»Carbon-coated iron cataly...