Welcome to DU! The truly grassroots left-of-center political community where regular people, not algorithms, drive the discussions and set the standards. Join the community: Create a free account Support DU (and get rid of ads!): Become a Star Member Latest Breaking News General Discussion The DU Lounge All Forums Issue Forums Culture Forums Alliance Forums Region Forums Support Forums Help & Search

OKIsItJustMe

(19,938 posts)
Tue Apr 18, 2017, 10:33 PM Apr 2017

Mechanism behind the electric charges generated by photosynthesis -A step towards artificial phot...

http://www.kobe-u.ac.jp/research_at_kobe_en/NEWS/news/2017_04_13_01.html
[font face=Serif][font size=5]Mechanism behind the electric charges generated by photosynthesis -A step towards artificial photosynthesis[/font]

April 6, 2017

[font size=3]Photosynthesis requires a mechanism to produce large amounts of chemical energy without losing the oxidative power needed to break down water. A Japanese research team has clarified part of this mechanism, marking another step towards the potential development of artificial photosynthesis. The findings were published on February 27 in the online edition of The Journal of Physical Chemistry Letters.



During the water-splitting reaction in photosynthesis, plants produce oxygen by converting solar energy into chemical energy, providing the energy source necessary for their survival. This reaction is carried out by a protein complex in chloroplasts (located in leaves) called the photosystem II complex (see figure 1).

In 2015 Professor Kobori’s research team succeeded in analyzing the electronic interactions and 3-dimensional placement of the initial charge separation produced directly after photoreaction in the photosynthetic reaction center of purple bacteria, which do not cause the oxidation potential for water-splitting. However, in the photosystem II complex for higher plants, the configuration of the initial charge separation state was unclear, and it was a mystery as to how it led to an effective water-splitting reaction while retaining the high oxidative power.



Based on these findings, researchers have unlocked part of the mechanism to effectively produce high amounts of chemical energy without loss of the oxidative power needed to split water in photosynthesis. These findings could help to design an “artificial photosynthesis system” that can provide a clean energy source by efficiently converting solar energy into large amounts of electricity and hydrogen. The application of this principle could contribute to solving issues with energy, the environment and food shortages.

…[/font][/font]
http://dx.doi.org/10.1021/acs.jpclett.7b00044
Latest Discussions»Issue Forums»Environment & Energy»Mechanism behind the elec...