Welcome to DU! The truly grassroots left-of-center political community where regular people, not algorithms, drive the discussions and set the standards. Join the community: Create a free account Support DU (and get rid of ads!): Become a Star Member Latest Breaking News General Discussion The DU Lounge All Forums Issue Forums Culture Forums Alliance Forums Region Forums Support Forums Help & Search

NNadir

NNadir's Journal
NNadir's Journal
October 19, 2016

American Electric Cars Generally Meet the 2030 climate Goals, and Almost the 2040 Goals.

I'm not a fan of electric cars, because, um, I'm not a fan of cars period.

All of the dancing around claims that cars are, or can be, made sustainable is a ridiculous fantasy. The rise of the automobile and the car CULTure it enabled is the primary example in my mind why distributed energy is a very dangerous idea. Other than fire pits and coal and wood burning stoves, the car is the oldest, and perhaps most pernicious form of distributed energy there is and every bit of the environment has suffered as a result of their rise, the atmosphere, fresh water resources, oceanic and other saline water resources, the soil, indeed the bedrock of land masses from Greenland to North America to South America, Asia, Europe, Australia and Africa.

Distributed energy requires distributed pollution, and there is no living thing on the face of this planet which is free of automotive waste of one type or another, and there is no mechanism for remediating this pollution.

I consider that the support for the Tesla automobile, for one example, which is inexplicably popular on the left despite the fact that these piles of future electronic waste, the Tesla cars, are designed for and by billionaires and millionaires is an absurd crime against the future, but no one is asking my opinion.

Tesla cars have nothing, nothing at all, to do with what once were the traditional goals of the Democratic Party which used to be providing a path for all people to enjoy the benefits of our national resources, and not just the ultra rich and yet if one hangs out on Democratic Party websites, one will see people drooling all over one another in praise of this, um, consumer junk.

This said, people nonetheless set "goals" for reducing automotive pollution, just like people set goals for a wide variety of other pernicious practices, like say preventing the wide spread use of sugary soft drinks to reduce diabetes rates. (Diabetes has never killed as many people as air pollution, but no matter...)

The graphic below comes from a publication in one of my favorite journals, Environmental Science and Technology.

Here is a link to the paper, which is behind a firewall, but can be accessed if one is not a subscriber, in a good scientific library:

Personal Vehicles Evaluated against Climate Change Mitigation Targets (Marco Miotti†?, Geoffrey J. Supran†‡?, Ella J. Kim§, and Jessika E. Trancik*†∥ , Environ. Sci. Technol., 2016, 50 (20), pp 10795–10804)



The graphic speaks for itself. Here's the caption though:

Figure 1. (a) Cost-carbon space for light-duty vehicles, assuming a 14 year lifetime, 12 100 miles driven annually, and an 8% discount rate. Data points show the most popular internal-combustion-engine vehicles (ICEVs; including standard, diesel, and E85 corn-ethanol combustion), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and battery electric vehicles (BEVs) in 2014, as well as one of the first fully commercial fuel-cell vehicles (FCVs). For most models, the most affordable trim is analyzed. For models that are offered with different powertrain technologies, the trims are adjusted to match feature sets. The shaded areas are a visual approximation of the space covered by these models. The emission intensity of electricity used assumes the average U.S. electricity mix (623 gCO2eq/kWh). The FCV is modeled for hydrogen produced either by electrolysis or by steam methane reforming. Horizontal dotted lines indicate GHG emission targets in 2030, 2040, and 2050 intended to be consistent with holding global warming below 2 °C. Panel b shows the same as panel a but for upfront vehicle prices only, based on MSRPs. (c–f) Comparisons of different powertrain technologies used in the same car models ("conventional" powertrains include gasoline and diesel combustion engines). Because trims of these comparisons are harmonized, some models (mostly ICEVs) would be available in more affordable versions with fewer features. For PHEVs and BEVs, the impact of the federal tax refund is also shown. Costs are given in 2014 U.S. dollars.


Some excerpts from the text:

The transportation sector accounts for 28% of U.S. greenhouse gas (GHG) emissions through vehicle fuel combustion, and 13% worldwide.(1, 2) Light-duty vehicles (LDVs), which are defined by the U.S. Environmental Protection Agency (EPA) as passenger cars and light trucks with 12 seats or fewer and a gross vehicle weight rating below 8500 lbs (10 000 lbs for SUVs and passenger vans),(3) contribute about 61% of emissions from the U.S. transportation sector.(2) LDVs are therefore a crucial element of any comprehensive strategy to reduce U.S. and global GHG emissions, particularly under growing transportation demands.(1, 4-6)...

...Here, we address two missing elements in the literature by both reflecting the diversity of personal vehicle models available to consumers and assessing these options against climate change mitigation targets. When comparing personal vehicles against climate targets, it is important to understand the wide range of models available for purchase because consumer choices are defined by this available set.

In particular, we focus on the trade-offs between costs and emissions that consumers face in selecting a vehicle model. Although cost is not the sole influence on consumer purchasing decisions,(26-31) low-carbon vehicles will only achieve a dominant market share if they are affordable to a majority of the driving population. (Our proxy for affordability is the relative cost of low-carbon vehicles versus popular, conventional vehicles on the market.) Here, we address these issues by examining a comprehensive set of 125 vehicle models on sale today, covering all prominent powertrain technology options: internal-combustion-engine vehicles (ICEVs); hybrid electric vehicles (HEVs); plug-in hybrid electric vehicles (PHEVs); and battery electric vehicles (BEVs). Our analysis also includes the 2016 Toyota Mirai, one of the first commercially available fuel-cell vehicles (FCVs).

We evaluate vehicle models on a cost-carbon plot(32) to answer the overarching questions: How do the costs and carbon intensities of vehicle models compare across the full diversity of today’s LDV market, and what is the potential for various LDV technologies to close the gap between the current fleet and future GHG emission targets? Specifically, we ask: Do consumers face a cost-carbon trade-off today? Which models, if any, meet 2030 GHG emissions reduction targets? Finally, in the longer term, which vehicle technologies would enable emissions targets for 2040 and 2050, designed around a 2 °C limit, to be met? What role can advancements in the carbon intensity of electricity generation, powertrain efficiencies, and production pathways for liquid fuels play? The insights and choices identified in this study may be of interest to car owners, cars manufacturers, and transportation policymakers alike.


The, um, "2 °C limit" is my opinion a joke. The effort which we are making to meet it, which consists of whoring about endlessly on the topic so called "renewable energy" while burning ever larger quantities of dangerous fossil fuels because, um, so called "renewable energy" hasn't worked, isn't working and won't work, has led to an acceleration in the rate of new accumulations of carbon dioxide in the planetary atmosphere and not a reduction in - or elimination of - that rate.

The authors use figure for carbon dioxide emissions resulting from electricity:

The carbon intensity of electricity is modeled as the average U.S. mix, including emissions from infrastructure construction (623 gCO2eq/kWh). We use a consistent lifetime of 169 400 miles (272 600 km) for all vehicle types, corresponding to the approximate averages for LDVs in the U.S.(41) Other GREET parameters are left at their defaults


(GREET is environmental life cycle analysis software that's become something of a standard these days.)

This figure, 623 gCO2eq/kWh is uncomfortably close to the figure for dangerous natural gas electricity, about 500 to 550 depending on who you ask, and it is very unlikely, given current policies which are all gas centric - including the expensive "investment" in the worthless and gas dependent solar and wind industries - to ever fall below that level in the lifetime of anyone now living, although this will not stop the assholes at say, Greenpeace, from offering stupid statements that begin with the words "by 2100..."

And here is what the authors say about the expected use of the cars they analyze:

The costs of ownership are calculated as the present value of the costs of purchasing the vehicle, paying for fuel and electricity, tire replacements, and regular maintenance, and are presented in 2014 U.S. dollars. As with the calculation of GHG emissions, we assume that each vehicle is driven a total distance of 169 400 miles at 12 100 miles (19 470 km) per year for 14 years of ownership.


169,400 miles is roughly 272,600 km if you're looking at the chart above.

So let's look at the chart: The Tesla piece of shit comes in at around 125 g of CO2 per km. This means that one will release, at 20,000 km per year, one would release about 2.5 metric tons of carbon dioxide each year or 35 metric tons in the cars putative lifetime. (How would you store 35 metric tons of carbon dioxide in your "distributed" waste dumps, by the way?)

A quick Google search suggests that there are between 250 and 260 million registered cars in the United States.

Thus if all of us were rich fools driving Tesla cars, at 2.5 tons per year, - we haven't been, we aren't and we won't be - we would be releasing each year about 625 million tons of carbon dioxide each year to drive.

This is less than we generate now to drive but it is hardly zero.

And let's be clear, since we will never again record a level of carbon dioxide below the current value of a shade over 400 ppm, what we can afford at this point is precisely that which we clearly have no intention of reaching, zero.

The cost of manufacturing this car crap - which will rise as the materials used to manufacture them deplete requiring the use of ever lower grades of ores - can be seen in another graphic in the paper:



The caption:
Figure 2. Sales-weighted averages by vehicle class, size, and technology of (a) GHG emissions and (b) costs for the data shown in Figure 1. The shaded bars represent the averages when the most affordable trim is analyzed, as in Figure 1. The error bars represent the averages when analyzing the trim with the worst fuel economy for each model (only ICEVs have trims with substantially different fuel economies for each model). The numbers in brackets represent the number of vehicle models considered for each group. SUV = sport utility vehicle; Trck = pickup truck; Sprt = sports car.


It says nothing of the cost of disposing of the existing 250 million cars as we mindlessly motor ourselves toward the consumerist goal of "all new stuff" in the mistaken that acquiring "all new stuff" passes for environmentalism. It hasn't; it doesn't; and it won't.

I suppose I'd be more fun if I told you what you want to hear, rather than the truth, but I haven't, I'm not, and I won't.

Have a nice evening.
October 15, 2016

Get a haircut; save the world.

This post is a bit tongue in cheek, but I came across a fun paper today while leafing through the current issue one of my favorite scientific journals, ACS Sustainable Chemistry and Engineering.

(The current issue has a considerable focus on the chemistry of lignin, the "other" constituent in wood and straw besides cellulose, and in many ways, the more interesting and possibly more useful constituent for producing high value added - and carbon sequestering - chemicals in a sustainable world, not that we have any intention of creating a sustainable world.)

The paper in question is this one: Human Hair: A Suitable Platform for Catalytic Nanoparticles (Dian Deng?†, Mayakrishnan Gopiraman*‡, Seong Hun Kim§, Ill-Min Chung?‡, and Ick Soo Kim*†, ACS Sustainable Chem. Eng., 2016, 4 (10), pp 5409–5414)

One can access the full paper in a good university science library, but I'll put up a few excerpts of the paper here:

Human hair (HH) is a complex tissue that consists of proteins, lipids, water and pigments in which proteins of hard fibrous type known as keratin are largely present (67–88%).(1) Unlike other biomaterials, structural morphology of HH-tissue is highly unique and it is nearly impossible to mimic the structure. HH-derived biomaterials have been employed in biomedical applications.(2) Walter et al.(3) utilized HH fiber as a reactor/medium for the controlled synthesis of fluorescent Ag nanoparticles. PbS nanocrystals were also formed within the HH-matrix during blacking.(4) They found that the shape and distribution of nanoparticles are controllable. In spite of these advantages and availability, the HH is often considered as biowaste.(5) Proteins in HH are heteroatom (O, N and S) rich condensation polymers of amino acid. Chemical and physical integrity of the HH units are extremely good respectively due to the presence of cystine group (-s-s- bonds) and cortex.(6) In addition, the keratin of HH is one of the highly insoluble fibrous-proteins in most of the organic solvents.(1-6) Fiber structure and the presence of heteroatom are also interesting points to be noted. Considering its unique physical and chemical properties, we assumed that the human hair would be a suitable candidate for the immobilization of catalytic metal nanoparticles (NPs). Besides, we expected that HH would overcome the drawbacks of common supports (silica, alumina, carbon materials and polymers). In general, the catalyst support provides a platform for NPs to have a much larger number of active atoms on the surface.(7) Nanocellulose,(8) wool-keratine,(9) chitosan,(10) natural pumice,(11) mycelial,(12) Gram-negative bacteria and Gram-positive bacteria(13) are some of the green supports reported to date. However, most of the common supports are moderately expensive, difficult to prepare, toxic and environmentally nonfriendly. In addition, hydrophobic nature of the common supports (carbon nanomaterials including biomass-derived activated carbons) often limits metal–support interaction which leads the further growth and aggregation of NPs.(14, 15) To overcome this issue, additional surface modifications are necessary for the supports prior to the immobilization of NPs.(16) Moreover, to control the NPs size and morphology of catalysts, surfactants are often used.(17) Expensive and hazardous acid treatments (H2SO4/HNO3 or HCl) have been performed for carbon materials to make them suitable as supports for decoration of metal NPs.(18) Similarly, the surface of cellulose nanofiber was modified with anionic groups to obtain better morphology of NPs-supported cellulose catalysts.(19) Notably, obtaining better morphology of green catalysts at high metal loading is also a highly challenging task.(20, 21) Considerable effort has been devoted to develop green and sustainable protocols for the preparation of nanomaterials by R. S. Varma.(22, 23) According to Joo et al.,(24) a good support must have strong interaction with foreign elements and have strong influence on the morphology and better activity of the targeted composites. Noble metals including Au and Ag are generally inactive in the bulk form, whereas, the Au and Ag NPs with diameter of few nanometers are highly efficient. In addition, synergistic effects between metals (Au or Ag NPs and other foreign metals) may also improve the activity of Au and Ag NPs. We postulate that the polymetallic nature of HH would enhance the activity of Ag and Au NPs. To our delight, this is the first investigation on human hair-supported Au and Ag catalysts reported for organic transformations.


"To our delight..." (my bold).

This is what science should be, and occasionally is, "To our delight..."

The chemists here attach gold and silver nanoparticles to materials derived from human here, and conduct a reaction known as the "aza-michael reaction" which involves making nitrogen carbon bonds.

This may be esoteric, but, well, trust me, these kinds of reactions are very important in many areas of technology, including but not limited to, the synthesis of life saving drugs.

Why is this important, and how will it "save the world" (if in fact, the world can be saved, an ever more dubious proposition)?

For one thing, the world is running out of many critical materials, gold and silver among them. While these coinage metals are often valued for their exchange value, it turns out that they are also very critical for a wide range of technologies, including electronics, and, of course, catalysis. Non-chemists may not appreciate catalysis, but in thousands of ways, every day life is totally dependent on this chemistry. By supporting metals on supports like human hair, we can extend the lifetime of these supplies of critical metals far into the future, providing for future generations that we have robbed of so much already.

It's important.

If you think that the collection of human hair cannot be industrialized, you are wrong. Early in my career I was involved in work to manufacture the important AIDS drug Nelfinavir. One of the starting materials for one route to the industrial synthesis of this drug - hundreds of metric tons of the drug needed to by synthesized each year - was the amino acid cysteine. The world's largest source of cysteine, at least at that time - it goes back 20 years - was, in fact, human hair, sourced mostly in China.

The paper has a graphic, produced below, shows a triazol made with the hair based catalyst. Triazols and the related tetrazols are often utilized in medicinal chemistry, where they serve as mimetics for carboxylic acids while conferring several pharmacokinetic and absorption advantages over the carboxylic acids themselves.



Esoteric, I know, but fun, if only in a dorky kind of way. We need a little fun at least until we get rid of that awful orange cancerous growth on the body politic, Trump.

Have a nice weekend.

October 15, 2016

I feel like some old engine...

...that lost it's driving wheel.

<iframe width="854" height="480" src="

" frameborder="0" allowfullscreen></iframe>
October 10, 2016

In the last 3 years, 21 million people died from air pollution. This figure is clearly...

...available in the scientific literature, a literature with which the deplorables in the anti-nuke industry avoid familiarity, since it's pretty clear that they only not only fail to know any science whatsoever, but actually despise science in general, and math in particular.

A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010 (Lancet 2012, 380, 2224–60: For air pollution mortality figures see Table 3, page 2238 and the text on page 2240.)

The air pollution death rate is roughly 800 deaths per hour, every hour, 8766 hours per year, every year, ten years per decade.

And the response from the deplorables in the anti-nuke industry. Innuendo, and more innuendo.

There's something Trumpian about this. Last night the orange asshole carried on about emails, with Ms. Clinton pointing out firmly - and completely honestly - that no secure information was ever breached, and that there is no evidence whatsoever that anyone was harmed by this faux Trumpian defined "disaster."

How is the innuendo here different? Well, for one thing, the deplorable carrying on by anti-nukes, stretching over decades of fear and ignorance resulted in far fewer lives having been saved from death by air pollution than the 1.8 million lives that were saved because of the use of nuclear energy, as noted again, in a highly cited and widely read publication in one of the world's premier scientific journals written by one of the world's most respected climate scientists:

Prevented Mortality and Greenhouse Gas Emissions from Historical and Projected Nuclear Power

(Pushker A. Kharecha* and James E. Hansen NASA Goddard Institute for Space Studies and Columbia University Earth Institute, 2880 Broadway, New York, New York 10025, United States Environ. Sci. Technol., 2013, 47 (9), pp 4889–4895)

(Trump, by contrast, hasn't killed anyone yet, not at least to our knowledge, and it seems that the American people will prevent him from doing so by kicking his useless ass in the coming election.)

But the real tragedy associated with the deplorable anti-nuke selective attention - by which they couldn't give a fuck about tens of millions of air pollution deaths even as they carry on about software that has harmed no one - is that they helped promote an approach to the environment that failed and failed miserably.

2016 is now being recorded as a year of unprecedented new accumulations of the dangerous fossil fuel waste carbon dioxide in the planetary atmosphere. The deplorables in the anti-nuke industry convinced the world to invest quantities measuring in the trillions of dollars on so called "renewable energy," chiefly the solar and wind industry. Combined these two industries, despite this huge expenditure - which might have been more wisely spent on thousands of more useful things - don't produce 5 of the 570 exajoules of primary energy that humanity generates and consumes each year.

As a result, the fastest growing source of energy on this planet is a dangerous fossil fuel, natural gas, without which, by the way, the so called "renewable energy" scam would be even more useless.

In the last ten years while two trillion dollars was being squandered on this unsustainable garbage - which is not actually "renewable" since it relies on the mining of vast quantities of toxic and increasingly rare elements - the rate of increase of the increase in dangerous fossil fuels - the second derivative for those who, unlike anti-nukes, know math - has reached new levels never seen before. 2016 is likely to be the second year in a row that the increase is more than 3.00 ppm, despite never having reached such a rate in recorded history.



So called "renewable energy" didn't work; it isn't working; and it won't work.

Heckuva job deplorables. Heckuva job.

Have a nice week.





October 8, 2016

Meanwhile Humanity for Hillary Goes Positive...

...Just got to love these beautiful young people coming together to dance to celebrate our diversity and our candidate:

https://vimeo.com/185625717

And on their website, they have this powerful endorsement by Makail Baryshnikov:

<iframe width="500" height="281" src="

" frameborder="0" allowfullscreen></iframe>

It all makes me positive, makes me feel why we should love our candidate.
October 2, 2016

Reflections on this year's CO2 minimum at the Mauna Loa observatory.

This will be my 20,000th post on this site; maybe I shouldn't have bothered with the internet all all.

Whatever. As Macbeth remarked, "What is done cannot be undone."

The Mauna Loa Observatory each week releases a data point comparing carbon dioxide concentrations in a recent week with the same week of a previous year and the value of the week ten years before.

Each year, carbon dioxide concentrations almost always reach a minimum for the year as a whole in the well into September or early October. In 2015, this point was September 27, at 397.20 ppm; in 2014, it was on September 21, at 395.31 ppm; in 2013, it was on September 8, at 392.06 ppm; for 2012, it was September 16 at 390.73 ppm; for 2011, it was on September 18, at 389.08 ppm.

For September 27, 2016 - the likely minimum this year - the value was 400.72 ppm

The average value for the increases, as compared to the previous year of these weekly data points recorded at Mauna Loa since their inception in 1975 for all data points, - not just those at minimums - is 1.77 ppm. Of those points recorded in the 20th century, the average was 1.54 ppm. For points recorded in the 21st century, the average increase over the previous year is 2.10 ppm.

For 2014, the average was 2.09 ppm, for 2015 - which proved to be the worst year ever recorded, 3.05 ppm over 2014 - the weekly average increases were 2.26 ppm.

For 2016, the average thus far is 3.52 ppm.

The worst 30 such increases recorded of the 2122 such data points, 15 have been recorded in 2016, including the two worst ever recorded, 5.04 ppm on July 31 of this year, and 4.78 on June 12.

All of our efforts to address climate change have failed.

I have taken some flack over the 14 years I've been writing here for my support for nuclear energy. Everything I have ever written on the topic here and elsewhere may have been a complete waste of time - I spent too much of it calling out, in harsh terms, the complete idiots who despise nuclear energy because they get their information from cartoons and uneducated thugs rather than from science and engineering texts. It was a different approach from the polite attempts to be reasonable, like say those of the great scientist who once headed the Atomic Energy Commission, Glenn Seaborg.

It seems likely everything I have ever said or did about energy has failed; but so did everything that Glenn Seaborg said or did about nuclear energy has also failed.

And we are another kind of minimum, the time when we are doing the minimum to address the crisis before all future generations.

The world is investing heavily is so called "renewable energy." Like my less than important efforts on behalf of nuclear energy, and the work of many highly educated - many great - scientists and engineers who worked on behalf of nuclear energy have failed, so has renewable energy failed, and so, as the data above shows, it is failing, and so the laws of physics require that it will fail.

I did what I could in my thousands of posts here and elsewhere, sometimes at the cost of being shut up, as was the case some years ago when I was banned at Daily Kos by the scientifically illiterate journalists who run the place, for um, telling the truth:

The great climate scientist Jim Hansen has published in the primary scientific literature a paper with something called scientific references, data that shows that nuclear energy 1.8 million lives. (Environ. Sci. Technol., 2013, 47 (9), pp 4889–4895) Hansen shows that were it not for fear and ignorance, nuclear energy might save 10 million lives more, with just a minor tech.

It follows that anti-nukes are not merely enemies of the people, they are murderers, pure and simple, murderers whose weapons are fear and ignorance.

Have a nice of evening.


Comment in: GETTING TO ZERO: Is renewable energy economically viable?

20,000 posts is a milestone, not an accomplishment. I noted in an earlier post here that we will never see a value at Mauna Loa under 400 ppm in our lifetimes, if ever.

Paper in Nature Climate Change: We will never again see monthly readings less than 400 ppm...in our lifetimes.

The author of the paper cited therein, wrote the following about the 400 ppm figure:

...A point of interest is the passing of 400 ppm in the Mauna Loa record. Although there is nothing physically significant about this concentration, it has recently become an iconic milestone in popular discourse regarding the ongoing rise in atmospheric CO2 (for example, ref. 15). In the last two years, CO2 has fluctuated around 400 ppm through the annual cycle, which has amplitude of approximately 6–7 ppm at Mauna Loa. 2014 was the first year that monthly CO2 concentrations rose above 400 ppm, and in 2015 the annual mean concentration has passed 400 ppm for the first time, but the monthly mean concentration fell back below 400 ppm for three months at the end of the boreal summer, reaching a monthly mean of 397.50 ppm in September. Adding the recent mean growth rate of 2.1 ppm yr?1 to this value would suggest a 2016 September concentration of 399.60 ppm. However, on the basis of the observed and forecast Niño 3.4 SSTs as of November 2015, we predict a Mauna Loa CO2 concentration in September 2016 of 401.48 ± 0.53 ppm (Fig. 3)...


...In the longer term, a reduction in CO2 concentration would require substantial and sustained cuts in anthropogenic emissions to near zero. Even the lowest emissions/concentrations scenario assessed in the IPCC Fifth Assessment Report projects CO2 concentrations to remain above 400 ppm until 2150. This scenario, RCP2.621, is considered amongst the lowest credible emissions scenario, and relies on assumed development of 'negative emissions' methods whose potential is considered limited22. Indeed some argue that RCP2.6 is now beyond reach without radical changes in global society23. Hence our forecast supports the suggestion24 that the Mauna Loa record will never again show CO2 concentrations below the symbolic 400 ppm within our lifetimes.


El Niño and a record CO2 rise (Richard A. Betts, Chris D. Jones, Jeff R. Knight, Ralph F. Keeling & John J. Kennedy, Nature Climate Change 6, 806–810 (2016))

If you're young, I'm deeply ashamed of what my generation has done for yours, but as old man in the waning years of life, looking back, let me say that the wasted time is the time you will regret when you run out of it.

May we chat again, but if not, as Spike Lee put it, "Do the Right Thing."

Enjoy the remainder of the weekend.
September 18, 2016

Eleven of the 37 weeks of 2016 have shown CO2 increases higher than 4.00 ppm...

...over the same week of 2015 at the Mauna Loa observatory.

Up-to-date weekly average CO2 at Mauna Loa (Accessed September 18, 2016)

The reading for the week ending September 11, 2016 of 401.33 ppm is 4.03 ppm higher than the reading in the same week last year.

Before 2016, there were only 8 such readings in the entire history of the observatory's record of 2020 such readings going back to 1975.

They were the weeks ending September 6, 1998 (4.67 ppm), February 3, 2013 (4.54 ppm), September 27,1998 (4.49) ppm, April 18, 2010 (4.38 ppm), August 16, 2010 (4.17 ppm), May 6, 2012 and April 13, 2014, both at 4.01 ppm.

There are now 18 such readings, including one over 5.00 ppm, 5.04 ppm to be exact, on July 31 of this year. There was one other reading, 4.78 ppm, June 6, 2016 that exceeded all previous readings ever recorded.

Readings in the 20th century of this type averaged 1.54 ppm. In the 21st century, that same average is 2.09 ppm. For 2016 it is 3.52 ppm.

Since the destruction of the nuclear reactors, and thousands of buildings, at Fukushima, after which Japan shut it's nuclear reactors to see if they were "safe" and replaced them with power generated by burning dangerous fossil fuels using plants that kill people 100% of the time they operate, and not just after huge tsunamis, the average for these figures is 2.37 ppm.

In the last ten years, the world has squandered, other people use the word "invested", approximately two trillion dollars on so called "renewable energy" mostly on wind and solar infrastructure that will all be landfill within the next 30 years.

It didn't work; it isn't working; and it won't work.

If any of this troubles you; don't worry, be happy.

The City of Los Angeles has announced that it will be 100% powered by so called "renewable energy" "by 2030."

We can add this to the tens of thousands of announced programs and forecasts of "renewable energy by such and such a date" going back over half a century, beginning with Amory Lovins 1976 announcement that the United States would be producing 16 quads of solar energy "by 2000" (the entire planet as of 2016 doesn't produce 2 such quads), and extending right up to the present day.

Most such announcements choose a "by such and such a date" time point that will take place after the soothsayer offering it will be dead, but no matter.

All such predictions have been delusional. All are cases of people lying to themselves, something we are all happy to do, since it places the onus of action on our children and grandchildren to do what we have not done, and in fact, can't do, since so called "renewable energy" is, 1) not renewable, and 2) not sustainable, and 3) not realistic.

The world was previously powered by so called "renewable energy" up until the early 19th century, when so called "renewable energy" was abandoned because the bulk of the world's population, even more so than today, lived short, miserable lives of dire poverty.

But again, don't worry. Be happy.

It's the thought that counts, not results.

Have a wonderful week.

September 16, 2016

Paper in Nature Climate Change: We will never again see monthly readings less than 400 ppm...

...in our lifetimes. As anyone familiar with my record here will know, I have been reporting on the disastrous climate events that have been taking place in 2016 where the carbon dioxide concentrations have been climbing at a record pace.

My last entry on this topic was here: July 31, 2016: Mauna Loa carbon dioxide levels 5.04 ppm higher than one year ago.

For the first time in recorded history, the weekly year to year comparisons at the Mauna Loa carbon dioxide observatory have exceeded a 5.00 ppm increase over levels a year ago.

On July 31, 2016, the concentration of carbon dioxide at Mauna Loa was 403.47 ppm; one year ago it was 398.43 ppm.

Mauna Loa Weekly Trends, accessed Aug 7, 2016

During summers in the Northern Hemisphere, carbon dioxide levels fall slightly from the peaks usually observed in April or May; the minimums usually occur in September. The 2016 max, observed during the week ending on April 10, 2016 was 408.31 ppm.

All of humanity's efforts to address climate change have failed. This includes all the, rhetoric, charts and graphs about the "triumph" of so called "renewable energy" on which we bet, foolishly as it turns out, our planet's atmosphere.


Some folks in the primary scientific literature have commented on it as well.

The paper attached comes from the journal Nature Climate Change:

El Niño and a record CO2 rise (Richard A. Betts,
Chris D. Jones, Jeff R. Knight, Ralph F. Keeling & John J. Kennedy , Nature Climate Change 6, 806–810 (2016))

Some excerpts:

The introduction:

The long-term rise in atmospheric CO2 concentration, approximately 2.1 ppm yr?1 over the past decade, is caused by anthropogenic emissions arising from fossil fuel burning, deforestation and cement production1, 2. The annual growth rate, however, varies considerably as a result of climate variability affecting the relative strength of land and ocean carbon sources and sinks. The annual growth rate measured at Mauna Loa, Hawaii3, 4 is correlated with the El Niño–Southern Oscillation (ENSO), with more rapid growth associated with El Niño events5, 6, 7, 8, 9 through drying of tropical land regions and forest fires. To test the predictive value of this relationship, we present a forecast, made in October 2015, of the CO2 concentrations throughout 2016 based on the relationship, and verify against observations available so far. We predict the monthly mean CO2 concentration at Mauna Loa to remain above 400 ppm even in its annual minimum in September, which would not have been expected without the 2015–2016 El Niño...



The relationship between 1998 and 2016:

Historically there have been markedly large annual CO2 growth rates in El Niño years (Fig. 1), probably due to warming and drying of tropical land areas resulting in reduced carbon uptake by vegetation growth, increased carbon release by fire and drought-induced tree mortality. In 1997, dry conditions in Indonesia and Malaysia allowed human-ignited fires to escape control and ignite carbon-rich peatlands, which continued to burn for some months. An estimated 0.81 to 2.57 GtC were emitted to the atmosphere as a result11, equivalent to 13–40% of global annual mean carbon emissions from fossil fuels at that time and hence a substantial contribution to the anomalously large CO2 growth rate that year12. During La Niña events, when the equatorial Pacific is colder than average, the annual CO2 growth rate is slower.

The recent El Niño, now in its declining phase, was comparable with the 1997–1998 event in some respects. Although maximum SSTs were cooler in the eastern tropical Pacific, the Niño 3.4 index was 2.6 ± 0.30 °C over November 2015 to January 2016 (larger than November 1997 to January 1998) and most tropical land regions were again anomalously dry. Once again, drought conditions allowed human-caused fires in Indonesia to burn large areas. Estimates for 2015 suggest that the total greenhouse gas emissions from these fires is equivalent to 0.4 GtC, with large uncertainty — less than those in 1997 13, but still larger than for non-El Niño years.


Some comment on the "meaning" of 400 ppm:
...A point of interest is the passing of 400 ppm in the Mauna Loa record. Although there is nothing physically significant about this concentration, it has recently become an iconic milestone in popular discourse regarding the ongoing rise in atmospheric CO2 (for example, ref. 15). In the last two years, CO2 has fluctuated around 400 ppm through the annual cycle, which has amplitude of approximately 6–7 ppm at Mauna Loa. 2014 was the first year that monthly CO2 concentrations rose above 400 ppm, and in 2015 the annual mean concentration has passed 400 ppm for the first time, but the monthly mean concentration fell back below 400 ppm for three months at the end of the boreal summer, reaching a monthly mean of 397.50 ppm in September. Adding the recent mean growth rate of 2.1 ppm yr?1 to this value would suggest a 2016 September concentration of 399.60 ppm. However, on the basis of the observed and forecast Niño 3.4 SSTs as of November 2015, we predict a Mauna Loa CO2 concentration in September 2016 of 401.48 ± 0.53 ppm (Fig. 3)...



And now the depressing part, wherein the bold is mine.

With the growth rate expected to reduce again after the El Niño, could the annual minimum CO2 concentration fall back below 400 ppm again next year or further in the future? This is exceptionally unlikely. In the instrumental record that covers the last half-century, annual growth rate has always been positive as a result of ongoing anthropogenic emissions, and the amplitude of the seasonal cycle has not varied substantially. Both the annual mean and September minimum CO2 concentrations have therefore increased year on year. This was the case even in years with large La Niña events or major volcanic eruptions that temporarily caused cooling and greater net uptake of CO2 by the biosphere, resulting in smaller, but still positive growth (Fig. 1a). For example, in the large La Niña in 1999–2000, the growth rate remained above 1ppm yr?1. Unless a very large volcanic eruption injects substantial quantities of aerosol into the stratosphere, we would expect concentrations continue to rise further above 400 ppm in the next few years.

In the longer term, a reduction in CO2 concentration would require substantial and sustained cuts in anthropogenic emissions to near zero. Even the lowest emissions/concentrations scenario assessed in the IPCC Fifth Assessment Report projects CO2 concentrations to remain above 400 ppm until 2150. This scenario, RCP2.621, is considered amongst the lowest credible emissions scenario, and relies on assumed development of 'negative emissions' methods whose potential is considered limited22. Indeed some argue that RCP2.6 is now beyond reach without radical changes in global society23. Hence our forecast supports the suggestion24 that the Mauna Loa record will never again show CO2 concentrations below the symbolic 400 ppm within our lifetimes.


If any of this bothers you, don't worry, be happy.

Those assholes at Greenpeace are continuously and constantly predicting that sometime after they and everyone else who had to sit through their tiresome repetitive and illiterate bullshit will be dead, the world will be a 100% renewable nirvana. The fact that they have been predicting this endlessly and continuously and that things are getting much, much, much worse, and not better, has no meaning.

As you may know, Greenpeace is not an organization where people do science, science being a practice in which results trump theory. You can't get into Greenpeace if you're aware of the contents of an engineering or biology or chemistry or physics or math book - but if you join Greenpeace you sure can talk, and talk, and talk - especially on subjects you know nothing about - even as the rest of us, and all future generations choke, and choke, and choke and choke.

So called "renewable energy" didn't work; it isn't working; and it won't work, but it's not results, but the thought that counts.

Have a lovely weekend.

September 16, 2016

Fun with Chemistry: Recovering the rare element gallium from dead solar cells.

Last night I was reading several papers in the literature concerned with what the badly screwed future generations might do with all the solar cells we've been manufacturing in recent years, despite the fact that they have failed to do a damned thing to address the accelerating rate of climate change.

The solar industry is tiny and clearly useless despite soaking up trillions of dollars, and there are many rote assumptions that claim they are "green" (as in environmentally benign) and "sustainable" (they can be used indefinitely).

As is the case with many rote assumptions, they are wrong.

The paper to which I will refer here is this one: Separating and Recycling Plastic, Glass, and Gallium from Waste Solar Cell Modules by Nitrogen Pyrolysis and Vacuum Decomposition (Lingen Zhang and Zhenming Xu, Environ. Sci. Technol., 2016, 50 (17), pp 9242–9250)

Some text from the paper:

The first solar cell was invented at Bell Laboratories in 1954. After the energy crisis of the 1970s, the products of solar cells started to be used in civilian fields. Converting the energy of sunlight into an easily usable form is one of the most attractive solutions to the shortage of fossil energy.(1) Photovoltaic energy has been known as the cleanest energy in the 21st century. With the rapidly expanding of photovoltaic market, the output of solar cells is growing by about 28.14% a year in China.(2) The solar cells have been widely used in transportation, communications, space, and other fields. Crystalline silicon has become an important and dominant semiconductor material in most of solar cells.(3) Apart from Si wafer-based module, gallium arsenide (GaAs) which is a compound semiconductor has been used for decades to make ultrahigh-efficiency solar cells because of its advantages, including their high photoelectric conversion efficiency and excellent antiradiation performance.(4, 5)...

...Gallium, as an important strategic resource, has been categorized as one of 14 mineral resources by the European Commission in extreme shortage.(11) The world reserve of gallium has been estimated to be 18 000 tones, which is merely one tenth of gold.(12) In nature, gallium has no ores of its own at all; rather it occurs in trace and minor amounts in various associated minerals types, such as bauxite, zinc, tin, and tungsten ores.(13, 14) Hence, it has led to strong interest for recovery of gallium from wastes. At present, various researches have been developed to recycle gallium. Technologies include acid leaching,(15) organic solvent,(16, 17) chemical precipitation, electrochemistry,(18, 19) and supercritical extraction(20) etc. I.M. Ahmed(21) proposed extracting method by Cyanex 923 (a mixture of four trialkylphosphine oxides) and Cyanex 925 (bis(2,4,4-trimethylpentyl) octylphosphine oxide) in kerosene from hydrochloric acid medium to recycle Ga(III). Although these studies have focused on recycling gallium resource, environmental improvement are still challenging due to limitations on using large volume of acid/alkali/organic reagent with high concentration.


The bold is mine. That bolded remark doesn't sound all that "renewable" to me.

The authors propose nitrogen pyrolysis and vacuum decomposition which is (they say) cleaner. Here's some of their investigation of the "clean" process.

The effect of temperature on the organic conversion rate was investigated in the range from 573 to 1073 K at 0.5 L/min N2 flow rate lasting 30 min. It could be seen from Figure 6(a) that the organic conversion rate was low when temperature was 573 and 623 K, which was 19.61% and 36.02%, respectively. But when temperature reached 673 K, the organic conversion rate sharply increased and exceeded 98%. With the temperature over 773 K, the organic conversion rate reached approximately 100%. It indicated that the pyrolysis temperature of plastic components was 773 K. We analyzed the organic components of oil products from 773 to 1073 K. The results were summarized graphically in Figure 7(a). We found that the organic components of oil and gas products had obvious changes with the increasing of temperature. When the temperature reached 773 K, alkanes and olefins were main organic components in the oil products. But, some naphthenes, acetophenone, and methyl naphthalene, etc. began to be detected in pyrolysis oil products with the temperature rising to 873 K. When the temperature arrived 973 and 1073 K, anthracene, phenanthrene, and homologues of benzene were main components of pyrolysis oil products. For pyrolysis gas products from panel materials (as shown in Figure 7(b)), benzene rapidly increased with increasing of temperature. But, components of gas products were not change. Therefore, the temperature of pyrolysis should be controlled under the condition of 773 K.


Um...benzene. I'm sure they'll be absolutely safe, since all recycling facilities for electronic waste are absolutely safe.

The arsenic is recovered as diatomic arsenic gas which distills away.

The process is in no way quantitative.

he effect of temperature on the recovery efficiency of gallium was investigated in the range from 973 to 1273 K, maintaining system pressure of 1 Pa and reaction time of 40 min. As shown in Figure 9(a), the recovery efficiency of gallium increased sharply with an increase of temperature from 973 to 1023 K. The recovery efficiency reached 60.9% when the temperature was 1023 K, and then its rise began to slow. The recovery efficiency of gallium increased to 76.4% with the temperatures reached 1273 K. Figure 9(b) showed the theoretical and experimental evaporation rate of Ga particles. In theory, the evaporation rate of gallium should be increased with the increase of temperature, according to Langmuir-Knudsen eq (eq 3). However, the evaporation rate has not changed in our experiment. The experimental evaporation rate of Ga presented nearly linear relationship with temperature, which was range from 5.64 × 10–5 to 2.12 × 10–4. Its explanation may be that on the one hand, first, the decomposition reaction of GaAs is happened, which needed a high temperature and then metallic gallium can volatilize.


Well, whatever gallium and arsenic remains, we can always take it to a "green landfill."

It's amazing how much handwaving and how many ill thought out beliefs, dogmatic beliefs, get attached to the solar industry, since for many decades it was all theory and no practice.

The practice is quite different. Trillion dollar quantities of resources have been thrown at this industry in the last ten years, with the result that the annual increases in the dangerous fossil fuel waste carbon dioxide is the highest ever observed.

It is expected that in about twenty years, about two million tons of used and dysfunctional solar cells will need disposal on this planet. cf (Sustainable System for Raw-Metal Recovery from Crystalline Silicon Solar Panels: From Noble-Metal Extraction to Lead Removal (Byungjo Jung†, Jongsung Park‡, Donghwan Seo†, and Nochang Park*, ACS Sustainable Chem. Eng., 2016, 4 (8), pp 4079–4083)

Enjoy the coming weekend.
September 14, 2016

Icarus

<iframe width="854" height="480" src="

" frameborder="0" allowfullscreen></iframe>

Profile Information

Gender: Male
Current location: New Jersey
Member since: 2002
Number of posts: 33,515
Latest Discussions»NNadir's Journal